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The non-linear dynamic analysis of a horizontal rigid rotor having unbalance and
supported on ball bearings has been done. The non-linearity is both due to Hertzian contact
and the radial internal clearance. The system is excited by the varying compliance frequency
and the rotational frequency. For "nding out the "xed point and stability of the system the
concept of higher order Poincare map and interpolation technique has been applied. The
results show the appearance of instability and chaos in the dynamic response as the speed of
the rotor-bearing system is changed. Period doubling and mechanism of intermittency have
been observed as the routes to chaos. The experimental investigations for a horizontal
rotor-bearing system have shown the e!ect of varying compliance and increase in
non-linearity due to radial internal clearance of the ball bearing. The orbit plots, cascade
plots and frequency plots bring out the e!ect of radial internal clearance on the rotor
response.
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1. INTRODUCTION

Unbalance force in a rotor is an unavoidable e!ect. Howsoever good the balancing may be
for a rotor the unbalance force cannot be completely eliminated. For a horizontal Je!cott
rotor supported on ball bearings the exciting frequencies are because of the unbalance force
and the varying compliance e!ect. The combined e!ect of unbalance and varying
compliance has not been considered by Fukata [1], Mevel and Guyader [2] and
Sankaravelu [3]; in these works only the varying compliance e!ect is considered. The
inclusion of the unbalance force makes the system biperiodically excited. The studies
undertaken by Day [4], Kim and Noah [5, 6] have considered the e!ect of unbalance force
only, but not varying compliance e!ect. Also, in references [4}6] the bearing is considered
to have only clearance non-linearity. In the present analysis, all the three e!ects, i.e., the
unbalance, the varying compliance and the clearance are studied in addition to
non-linearity due to Hertzian contact.

The theoretical results show the appearance of instability and chaos through a route of
period doubling and intermittency. The experimental results show the e!ect of radial
clearance on the dynamic response of the ball bearing. The non-linearity of the ball-bearing
support results in the appearance of subharmonics and sum and di!erence combination of
rotational and varying compliance frequencies.
0022-460X/00/500757#23 $35.00/0 ( 2000 Academic Press
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2. PROBLEM FORMULATION

The rotor-bearing system under study has the outer race of the ball bearing "xed to
a rigid support and the inner race "xed rigidly to the shaft. A constant vertical radial force
acts on the bearing. The excitation is because of the unbalance force which introduces the
rotational frequency and the varying compliance vibrations of the bearing which arise
because of the geometric and elastic characteristics of the bearing assembly varying
according to the cage position [1].

The ball-bearing model considered here has equi-spaced balls rolling on the surfaces of
the inner and outer races. There is perfect rolling of balls on the races so that the two points
of the ball (A and B) touching the outer and inner races have di!erent linear velocities
(Figure 1). The center of the ball has a resultant translational velocity. Therefore,
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The number BN depends on the dimensions of the bearing, for SKF6002, BN"3)6.
The damping is estimated by the relation provided by KraK mer [7]. The bearing is

assumed to be free of local and distributed defects. The ball-race contact deformation of the
ball generates a restoring force with non-linear characteristics because of the Hertzian
contact. Taking the x and y displacements of the center of the inner race (Figure 1),
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Figure 1. Ball bearing.
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The inner race is supported by the rolling balls over an angular contact zone the size of
which depends on the size of the radial internal clearance (c

0
) [8]. The values of C

b
and n are

arrived at by performing the elastic analysis of the Hertzian contact with the inner and outer
races and the ball [8], for SKF6002, C

b
"7)055]109 N/m3@2. If the expression inside the

brackets is greater than zero, then the ball at angular location h
i
is within the angular

contact zone and it is loaded giving rise to a restoring force Fh
i
. If the expression within the

brackets is negative or zero, then the ball is not in the load zone, and the restoring force Fh
i
is

set to zero. The &&#'' sign as a subscript in equation (4) signi"es this step change in the
restoring force expression and models the clearance non-linearity. The total restoring force
is the sum of restoring force from each of the rolling elements. Thus, the total restoring force
components in the X and > directions are
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As the shaft rotates, the angle h
i
changes with time (Figure 1) and is given by
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Here the reference is the vertical axis which is the direction of the constant vertical force. We
see that the angle h

i
is a function of time and this imparts the parametric e!ect to the system.

The system equations are

mxK#CxR #C
b

N
b

+
i/1

(x cos h
i
#y sin h

i
!c

0
)1>5
`

cos h
i
"=#F

u
cos(ut),

(7)

myK#CyR #C
b

N
b

+
i/1

(x cos h
i
#y sin h

i
!c

0
)1>5
`

sin h
i
"F

u
sin(ut),

where m is the mass of the rotor supported by bearing and mass of inner race, F
u

is the
unbalance force and u is the rotational speed. The system equations (7) are two coupled,
non-linear ordinary second order di!erential equations having parametric e!ect in them.
The sti!ness because of its step change behavior, the parametric e!ect with 1)5 non-linearity
and the summation term is non-analytic in nature.

2.1. BI-PERIODICALLY EXCITED SYSTEM

The numerical relationship between the rotational speed and the varying compliance
frequency is given by the number BN, equations (2) and (3). It follows from this relationship
that the two frequencies are related to each other by the bearing dimensions and the number
of rolling elements or balls, which determine the system frequency. Depending on the ratio
(R

i
]N

b
)/(R
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#R

0
), the system time period is large or small. For the bearing JIS6306 taken

by Fukata [1], the bearing dimensions and value of BN is given in Table 1.
For SKF6002 ¹
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]18

5
. A long time period makes most of the techniques

such as the non-autonomous shooting method [9] computationally ine$cient as the
variational equation would have to be integrated at each step of the Newton}Raphson
algorithm over a long time period. To overcome this problem the method used by Choi and



TABLE 1

Bearing number (BN)

Bearing R
1

(mm) R
0

(mm) N
b

BN

JIS6306 40)1 63)9 8 3)08
SKF6002 9)37 14)13 9 3)6
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Noah [10] for determining the "xed point of a bi-periodic system with incommensurate
excitation frequencies is adopted.

If the solution of the system is / (u
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For a large time period, value of k is large and q
k
is 1. An interpolating technique is utilized

with smaller values of k to reduce computation time. By choosing a positive e less than
one, the orbit of second order Poincare map will be composed of those points x*

k
where
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Therefore, Mq
k
N becomes a set of points where q

k
satis"es the condition given by equation

(11). Apparently, as e goes to zero, q
k
tends to 1 [10]. Using this property, the "xed point of

the system can be estimated by interpolating each co-ordinate (four state-space variables
and 16 elements of the Jacobian for the particular value of k, which de"nes the time for
numerical integration of the extended system [9]) corresponding to q

k
"1. These values are

used in the Newton}Raphson technique.

2.2. METHODS OF SOLUTION AND ANALYSIS

The system equations (7) have been found to have numerical sti!ness [9]. For this, the
numerical integration technique is of the implicit type based on the backward
di!erentiation algorithm. The subroutine for the backward di!erentiation technique is
obtained from the NAG library. The steady solution is obtained by the non-autonomous
shooting method, which also gives the monodromy matrix and nature of bifurcations. The
higher order Poincare map is generated for studying the nature of solutions.
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3. RESULTS OF THEORETICAL SIMULATION

A ball bearing supporting a rigid horizontal rotor with an unbalance force is taken for
theoretical simulation.

3.1. FUKATA'S BEARING

Fukata's [1] bearing (JIS 6306) is considered. The unbalance excitation is taken as 15%
of W (58.8 N). The BN number for JIS6306 is 3)08 (Table 1), which makes the ratio of the
two frequencies a rational number. If the digits in the ratio of the two frequencies do not
recur within 16 places after decimal place for double precision, it is as good as irrational
number, resulting in quasi-periodic solutions.

At a period of 4200 r.p.m., the frequency spectrum (Figure 2(a)) shows the presence of
both, the rotational speed (70 Hz) and the varying compliance frequency (215)6 Hz). Both
these frequencies interact to produce sum and di!erence combination frequencies. From the
Poincare map (Figure 2(b)) we see discrete number of points which are due to the ratio being
a rational number. At 4800 r.p.m. there is period doubling. In the frequency spectrum
(Figure 2(c)) the rotational speed (80 Hz) and half the rotational speed (40 Hz), and the
varying compliance frequency (246)4 Hz) appear. From Figure 2(d) we see the closed curve
made of discrete points which points to the rational number of the ratio between the two
frequencies. At 5400 r.p.m. the frequency spectrum (Figure 2(e)) has a band structure and the
Poincare map in Figure 2(f ) has a characteristic layered structure pointing to the chaotic
nature of the response. For 5400 r.p.m. one Lyapunov exponent is positive.

3.2. RESULTS OF THEORETICAL SIMULATION WITH SKF6002

Three levels of unbalance force have been chosen for parametric study. To simplify the
study, a constant unbalance force in the entire speed range is assumed. Two values of radial
internal clearance have been considered, 20 and 3 km.

c
0
"20 km, C"200 Ns/m, F

u
"45% of =: From the response plot (Figure 3) the

high-amplitude region starting from 3000 r.p.m. has stable periodic response; in this region
the frequency spectra show spikes at multiples of 1X/5 (<C"18]1X/5). This periodicity
at 1¹ continues up to 9000 r.p.m. when period doubling bifurcations take place which
shows up as a 1X/10 component and its multiples visible in the frequency spectra at
9500 r.p.m. (Figure 4). The varying compliance frequency is very weak for this high
unbalance level. At around 10 000 r.p.m., periodic 1¹ solution returns but soon changes to
2¹ and from 11 500 r.p.m. chaos appears (Figure 4). The band structure in the frequency
spectra (Figure 4) points to a chaotic solution. The chaotic response continues up to
13 000 r.p.m. when it regains periodicity by going into period doubling solutions (Figure 4).
At 14 000 r.p.m. and more the periodicity again appears with period 1¹.

The frequency spectra and time response plot (Figure 5) at 17 000 r.p.m. show very strong
indications of intermittency as a route to chaos. From Figure 5 it is observed that there
seem to be two kinds of waveforms present, i.e., the periodic waveforms AA@ and
non-periodic waveform BB@. The intermittent periodic behavior with chaotic behavior
represents the competition between two attractors [10]. One attractor is of a periodic
nature and the other is a strange attractor.

The analysis for the present case revealed that the bifurcation at 16 200 r.p.m. seems to
explode into this intermittent behavior. As the speed is increased, the proportion of periodic
wave form decreases as compared to the chaotic waveform. This can be seen in
Figure 6 where at 18 000 r.p.m. the periodic waveform (AA@) has considerably reduced.



Figure 2. Fukata's bearing.
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At 28 700 r.p.m. the time response again explodes into an intermittent character. The
eigenvalue of the monodromy matrix indicates loss of stability by going out through !1)0.
Figures 7(a) and 7(b) give the response during two time intervals for the same speed
28 700 r.p.m., 2)1}3 and 3)25}3)6 s respectively. It is obvious that while the response in
Figure 7(a) is predominantly periodic, the one in Figure 7(b) is chaotic; this coexistence
points to the intermittent behavior. The closed multiloop character of phase plane in Figure
7(a) clearly indicates the presence of periodic response. The phase plane plots in Figure 7(b)
indicate the presence of aperiodic response with strong signs of chaos.



Figure 3. Speed response plot c
0
"20 km, C"200 Ns/m, F

u
"0)45 W: ) ) ) ) ) ) , Vertical displacement; * )*

horizontal displacement; , unstable one period response; X, Chaotic response.
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c
0
"20 km, C"200 Ns/m, F

u
"15% of=: The Poincare map at 7000 r.p.m. (Figure 8)

shows the characteristic layered structure of a strange attractor, the frequency spectrum and
orbit plot also show chaotic response. For this reduced level of unbalance the route to chaos
is also seen to be intermittent. At 16 666 r.p.m., the response explodes into intermittent
behavior. The eigenvalues of monodromy matrix cross from #1 so this becomes an
intermittent behavior of type I. In Figure 9, the frequency spectrum shows the band
structure and the orbit shows a small dense region surrounded by a less dense structure.
From Figure 9 it becomes clear that the intermittent mechanism develops a smaller periodic
orbit and another bigger aperiodic orbit. The smaller orbit is because of the periodic
smaller amplitude waveform and the bigger aperiodic waveform produces the chaotic
response.

c
0
"20 km, C"200 Ns/m, F

u
"5% of=: The speed response plot for the present case

of reduced unbalance is given in Figure 10. Three regions of chaotic response are identi"ed.
The three regions are 3000}6000, 8000}11000 and 16600}22000 r.p.m.

From analysis it is observed that up to about 3000 r.p.m. the response was stable and
periodic. The spectra for both the vertical and horizontal displacement were essentially line
spectra. At 3000 r.p.m. (Figure 11), the response becomes chaotic. At 5000 r.p.m. the chaotic
nature of response is maintained. At 7000 r.p.m. the analysis reached periodic nature of
response which at 9000 r.p.m. goes back to chaotic nature (Figure 11) with the 1X/2
component visible in the frequency spectrum.

From 11 000 to 16 600 r.p.m., the response is low amplitude and periodic. At 16 700 r.p.m.
the response suddenly turns chaotic by intermittency as indicated by the time response in
Figure 12. The time response waveform shows &&bursts'' as aperiodic behavior in between
low-amplitude periodic waveforms. At 17 000 r.p.m., the aperiodic waveform occupies more
time than the periodic waveform (Figure 12). At 22 000 r.p.m. the response returns to
periodic behavior as shown in Figure 13.

The reduction of unbalance force makes the <C stronger compared to the 1X frequency
component as can be seen by comparing the frequency spectra in Figures 4 and 11; also, the
extent of chaotic response increases.

c
0
"3 km, F

u
"45% of ="6 N, C"200 Ns/m: There are three regions of high

amplitude, Figure 14, in the speed response of a rotor supported on the bearings with the
given characteristics. The "rst region and the third have chaotic nature of response. From



Figure 4. Frequency spectra of horizontal displacement response c
0
"12 km, C"200 Ns/m, F

u
"0)45 W.
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Figure 15 of the response plots of frequency components 1/2X, 1X, 2X, 3X, 4X, 5X, it can
be seen that the peak &&A'' gradually shifts down in order of the frequency component. This
characteristic is also observed in experimental studies.

The region up to 12 000 r.p.m. has periodic solution (1¹). From 12 240 r.p.m., period
doubling takes place and suddenly chaotic response develops from 12250 r.p.m. onwards.
The sudden development of chaotic response from period doubling points to the



Figure 5. Frequency spectrum and time response plot, c
0
"20 km, C"200 Ns/m, F

u
"0)45 W, 17 000 r.p.m.

Figure 6. Time response plot, c
0
"20 km, C"200 Ns/m, F

u
"0)45 W, 18 000 r.p.m.
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intermittency mechanism of type III [11]. The time response plot for 12 250 r.p.m.,
Figure 16, shows intermittent bursts of non-periodic response.

The chaotic response regains stability at 15 500 r.p.m. The response remains stable up to
27 150 r.p.m. when period doubling takes place (Figure 17). The frequency spectra have
clear peaks at 1X/10. From 27 250 r.p.m. the response becomes chaotic again and at
33 000 r.p.m., the response (Figure 17) becomes period doubled with no sign of chaos. The
chaotic orbit which was developing a periodic orbit within it at 32 000 r.p.m. (Figure 17)
takes a well-de"ned periodic form at 33 000 r.p.m. The response retains its period-doubled
nature till 37 100 r.p.m.

c
0
"3 km, C"200 Ns/m,="6 N, F

u
"15% of=: For a low clearance value of 3 km

and unbalance force lower compared to the last case (45% of W), the system is found to
have strong linear characteristics. From the response plot (Figure 18), the regions of
high-amplitude AAA and BBA are not regions of instability.



Figure 7(a). Phase plane and time response plots 28 700 r.p.m. from 2)1 to 3)0 s.
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The two frequencies 1X and <C interact to produce a linear combination (<C$nx)
(Figure 19). It is also seen that the orbit has a &&net'' structure, resulting because of
multifrequency response with a very large time period (Figure 19).

4. EXPERIMENTAL ANALYSIS

Experiments have been conducted to investigate the e!ect of radial internal clearance and
the unbalance force on the dynamic response of a horizontal rotor. The speed range over
which the rotor is operated is such that the "rst critical is not crossed so the experimental
analysis is that of a rigid rotor. The signals have been acquired by displacement and
acceleration transducers after which the data are processed to give Bode, cascade, orbit,
time response and frequency plots. The analysis brings out the appearance of subharmonics
and superharmonic frequency components.

4.1. ESTIMATION OF BEARING STIFFNESS

An experimental set-up is used for determining the bearing sti!ness [12]. The set-up is
designed to be a rigid, horizontal Je!cott rotor supported on anisotropic bearings. In this



Figure 7(b). Phase plane and time response plots 28 700 r.p.m. from 3)25 to 3)6 s.
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case the displacement response in the horizontal and vertical directions would peak at
di!erent speeds corresponding to the bearing sti!ness in the two directions [7]. The shaft is
supported by deep groove ball bearings of known radial internal clearance. The bearing
supports are rigid in the vertical and horizontal directions. The shaft sti!ness, assuming the
ends of the shaft supported by ball bearings as simple supports allowing rotation, is
K

s
"1)6]108 N/m. The bearing sti!ness as found out theoretically from Gargiulo's [13]

and Tamura's [14] methods is of the order of 107 N/m so a shaft with sti!ness about 10
times that of the bearings can be taken to be rigid.

The shaft is coupled to a motor with a #exible coupling. The motor speed is controlled
with a feedback controller which gets the signals from an eddy current probe. The signals
are obtained with the help of proximity probes in the horizontal and vertical directions.
These two signals are input into a dual-channel spectrum analyzer (DSA; HP 3582A). The
rotor system is horizontal and the bearing supports have clearance which introduces
anisotropy. There is a very strong 2X component and also higher harmonics [3X, 4X,2]
which appear due to clearance and anisotropic e!ect [15]. It is observed from the DSA that
the amplitude of 2X and higher harmonics peak at two frequencies. These two frequencies
give us an estimate of the two natural frequencies corresponding to the sti!ness in the
vertical and horizontal directions. The theoretical results also show the appearance of peaks
for nX frequency components at 1/n times the critical speed.



Figure 8. Frequency spectrum, orbit plot and Poincare map, c
0
"20 km, C"200 Ns/m, F

u
"0)15 W, 7000 r.p.m.

Figure 9. Time response and orbit plot, c
0
"20 km, C"200 Ns/m, F

u
"0)15 W, 16 666 r.p.m.
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The rotor is run from 0 to 10 000 r.p.m. and the vertical and horizontal displacement
responses are fed in the DSA. The 3X and 4X frequency components are tracked and at
various speeds the averaged r.m.s. amplitude for 64 samples is noted. The mass of the shaft
and disc exerts a constant force of about 6 N at each bearing support. The level of
unbalance is about 2)4]10~6 kg m.

From Figures 20(a) and 20(b) C2-type bearing (radial internal clearance c
0
+2)5 km), the

amplitudes of 3X and 4X peak at two frequencies, i.e., 300 and 520 Hz for the vertical
direction and 280 and 420 Hz for the horizontal direction. The critical speed is 18 000 r.p.m.
(300 Hz) in the horizontal direction and 25 200}31 200 r.p.m. (420}520 Hz) in the vertical
direction. From the theoretical results, Figure 18, it can be seen that the critical speeds are



Figure 10. Speed response plot, c
0
"20 km, F

u
"0)05=, C"200 Ns/m: ) ) ) ) ) ), Vertical displacement;* )*,

horizontal displacement; , chaotic response.

Figure 11. Frequency spectra of vertical displacement response, c
0
"20 km, C"200 Ns/m, F

u
"0)05 W.

UNBALANCE RESPONSE WITH BALL BEARINGS 769
15 000 and 41 000 r.p.m. The observations made from the theoretical simulation and
experimental observations are close. The di!erence between the experimental and
theoretical observations (Figures 15 and 20(a), (b)) is because of the limitations in the
experimental set-up of controlling the vertical force at the bearing support at 6 N and in
theoretical analysis the unbalance force is a constant force throughout the speed range
unlike the experimental condition. The qualitative matching between theory and
experiment is good because both observations show the peaking of 3X and 4X components
at 1

3
rd and 1

4
th of the critical speed (on the DSA at the same frequency).



Figure 12. Time response, c
0
"20 km, C"200 Ns/m, F

u
"0)05 W.

Figure 13. Frequency spectrum, c
0
"20 km, C"200 Ns/m, F

u
"0)05 W.

Figure 14. Speed response plot, c
0
"3 km, C"200 Ns/m, F

u
"0)45 W: ) ) ) ) ) ) , Vertical displacement; * )* ,

horizontal displacement , chaotic response.
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Figure 15. Speed versus response of frequency components.
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4.2. ANALYSIS OF RESULTS AND DISCUSSION

For studying the non-linear e!ect of a ball bearing an experimental set-up (Figure 21) is
used. The rotor is supported by bush bearing and the ball bearing. The disk is mounted
unsymmetrically as close as possible to the ball bearing support so that the static load
coming on the ball bearing is maximum. The static load on the ball bearing is determined
experimentally by mounting the bearing support on a load cell and is found to be 6 N. The
natural frequency of this rotor-bearing system is estimated theoretically by the transfer



Figure 16. Time response, c
0
"20 km, C"200 Ns/m, F

u
"0)45 W, 12 250 r.p.m.
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matrix method which matches with those obtained experimentally by rap test. The values
obtained are shown in Table 2.

The proximity probes are mounted close to the disk. The horizontal and vertical response
signals are fed into a digital vector "lter (DVF) which is used for "ltering (or band rejecting)
1X signal. The output from the DVF is fed into the data-acquisition unit 108 DAUI of
Bently Nevada. After the sampling run is completed the data is downloaded on to the PC
with the help of ADRE for Windows (Bently Nevada). This software is also used for
processing the data to obtain Bode, cascade, and orbit plots.

Two di!erent levels of radial internal clearances are taken up for study SKF 6002-type C2
with radial clearance of about 2)5 km and SKF 6002-type C5 with radial clearance of 20 km.
The rotor speed is varied up to 10 500 r.p.m.

4.2.1. Cascade plots

Two-sided cascade plots have been generated from the acquired signal in which 1X is
band rejected (Figure 22). The plots show the forward and backward whirl frequency
components. The cascade plots are for C2- (2c

0
"5 km) and C5- (2c

0
"40 km) type

bearings (Figure 22(a) and 22(b) respectively). In the cascade plots 2X clearly develops two
peaks in the forward vibration component. For the smaller radial internal clearance the
strength of 2X is weak (Figure 22(a)) compared to the 2X component for higher radial
internal clearance (Figure 22(b)). Also, the "rst peak develops weakly for the smaller radial
internal clearance. The superharmonics like 3X also develop and the strength for higher
radial internal clearance is higher. The appearance of 3)6X shows the varying compliance
frequency, as seen theoretically by equation (3). The varying compliance frequency
component develops strongly for increased radial internal clearance. The appearance of
superharmonics is seen from the theoretical study (Figure 19) and also from other reported



Figure 17. Frequency spectra of horizontal displacement and orbit plots, c
0
"3 km, C"200 Ns/m, F

u
"0)45 W.

Figure 18. Speed response plot, c
0
"3 km, F

u
"0)15 W, C"200 Ns/m: ) ) ) ) ) ) , Vertical displacement; * )*,

horizontal displacement.
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works studying radial clearance at the rotor support [11]. The experimental reporting of
the varying compliance and its dependence on radial internal clearance is done in this study,
which has not been reported in any other work.



Figure 19. Frequency spectrum and orbit plot, c
0
"3 km,C"200 Ns/m, F

u
"0)15 W, 2000 r.p.m.

Figure 20. Response plots for 3X and 4X frequency components.

774 M. TIWARI E¹ A¸.
The reverse vibration components for the lower radial internal clearance are weak as
compared to the higher radial internal clearance. This is because of the increased anisotropy
at the bearing support due to increased radial internal clearance. The increase in the
backward whirl components due to support anisotropy has been shown by Muszynska
[16]. From the cascade plots it is seen that for a frequency range of 200}400 Hz and a speed
range of 3000}6000 r.p.m. for the forward whirl components the spectra for larger clearance
(Figure 22(b)) show larger number of frequency components as compared to the smaller
clearance (Figure 22(a)). The spectra (Figure 22(b)) show 4)6X and 4X for the larger radial
internal clearance. The increase in radial internal clearance increases non-linearity and the
response shows up many subharmonics and superharmonics.



Figure 21. Experimental rig.

TABLE 2

Natural frequencies of the rotor

Higher frequency (Hz) Lower frequency (Hz)

Theoretical 369)6 214)4
Experimental 300 200
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The result of multifrequency response results in the orbit developing a net structure which
has been shown in the theoretical results (Figure 19). The experimental results also show the
net structure of the orbit plots (Figure 23). As speed is increased the net structure changes to
form a near-elliptical structure at higher speed (above 8500 r.p.m.) because the increased
unbalance force makes the 1X dominant over the varying compliance and subharmonic
frequencies. The frequency spectra (Figures 24(a) and 24(b)) obtained after band rejecting
1X, for the rotor supported on C2 (lower clearance) and C5 (higher clearance, Figures 24(c)
and 24(d)) show the e!ect of radial internal clearance on the response. The frequency spectra
for C5-type bearing at a speed of 5020 r.p.m. (1X"83)7 Hz, <C"301)2 Hz) show the
appearance of 1

2
X, 2X, 3X, and 4X. The linear combinations of the varying compliance

frequency and rotational frequency also appear as seen in the theoretical result (Figure 19).
For lower radial internal clearance (Figures 24(a) and 24(b)) the 2X component is the only
well-developed peak. There is almost no sign of well-developed superharmonic and
subharmonic components for lower radial internal clearance (Figures 24(a) and 24(b)),
which strengthens the argument for decreased non-linearity due to decrease in radial
internal clearance.

5. CONCLUSIONS

The theoretical analysis for a rigid horizontal rotor-ball-bearing model with unbalance
force shows that multifrequency excitation due to varying compliance and unbalance force
results in a response which has regions of instability and chaos. The route to chaos is seen to
be intermittency mechanism by period-doubling behavior. Period doubling results in the
appearance of 1X/10 (for SKF6002) and its multiples. Frequency spectra displays multiples
of 1X and <C and the linear combination of the two frequencies.



Figure 22. Cascade plot (Full vibration spectrum), 1X notched: (a) C2 type (b) C5 type.
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The results of experimental analysis match with the theoretical results. The results show
that bearing clearance a!ects the anisotropic nature of the bearing support. The result of
increased clearance is to increase the strength of superharmonics, and the strength of
backward whirl components. Higher clearance generates more sub-harmonic components



Figure 23. Orbit plots C5 type.
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Figure 24. Frequency spectra 5020 r.p.m. low unbalance: (a) vertical displacement C2, (b) horizontal displace-
ment C2, (c) vertical displacement C5 and (d) horizontal displacement C5.
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in response compared to the case when the bearing has lesser clearance. The orbit plots have
a &&net'' structure which points towards a multifrequency response. The frequency spectra
show the appearance of a linear combination of the varying compliance and rotational
frequency. The experimental analysis could not show the occurrence of a chaotic
phenomenon.
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APPENDIX A: NOMENCLATURE

u
cage

rotational speed of bearing cage, rad/s
u

ROTOR
rotational speed of rotor, rad/s

u
vc

varying compliance frequency, rad/s
c
0

radial internal clearance, km
h
i

angular position of the ith ball in the ball bearing
e very small number
R

i
radius of inner bearing race

R
o

radius of outer bearing race
N

b
number of bearing balls

BN bearing number, R
i
(R

i
#R

o
)N

bC
b

sti!ness constant, N/m1>5
C damping, N s/m
K sti!ness, N/m
Fh

i
spring force at the ball at angular location h

iF
x

x-component of the resultant spring force
F
y

y-component of the resultant spring force
F
u

unbalance force
¹
VC

time period of varying compliance vibrations
¹
Rotational

time period of shaft rotation
= constant vertical force, N
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